Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys.

نویسندگان

  • Min Xia
  • Li Chen
  • Rachel W Muh
  • Pin-Lan Li
  • Ningjun Li
چکیده

Hydrogen sulfide (H(2)S), a novel endogenous gaseous bioactive substance, has recently been implicated in the regulation of cardiovascular and neuronal functions. However, its role in the control of renal function is unknown. In the present study, incubation of renal tissue homogenates with L-cysteine (L-Cys) (as a substrate) produced H(2)S in a concentration-dependent manner. This H(2)S production was completely abolished by inhibition of both cystathionine beta-synthetase (CBS) and cystathionine gamma-lyase (CGL), two major enzymes for the production of H(2)S, using amino-oxyacetic acid (AOAA), an inhibitor of CBS, and propargylglycine (PPG), an inhibitor of CGL. However, inhibition of CBS or CGL alone induced a small decrease in H(2)S production. In anesthetized Sprague-Dawley rats, intrarenal arterial infusion of an H(2)S donor (NaHS) increased renal blood flow, glomerular filtration rate (GFR), urinary sodium (U(Na) x V), and potassium (U(K) x V) excretion. Consistently, infusion of both AOAA and PPG to inhibit the endogenous H(2)S production decreased GFR, U(Na) x V, and U(K) x V, and either one of these inhibitors alone had no significant effect on renal functions. Infusion of L-Cys into renal artery to increase the endogenous H(2)S production also increased GFR, U(Na) x V, and U(K) x V, which was blocked by AOAA plus PPG. It was shown that H(2)S had both vascular and tubular effects and that the tubular effect of H(2)S might be through inhibition of Na(+)/K(+)/2Cl(-) cotransporter and Na(+)/K(+)/ATPase activity. These results suggest that H(2)S participates in the control of renal function and increases urinary sodium excretion via both vascular and tubular actions in the kidney.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathophysiological Concepts in Multiple Sclerosis and the Therapeutic Effects of Hydrogen Sulfide

Introduction: Multiple sclerosis (MS) is generally known as a manageable but not yet curable autoimmune disease affecting central nervous system. A potential therapeutic approach should possess several properties: Prevent immune system from damaging the brain and spinal cord, promote differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes to p...

متن کامل

اثر سولفید هیدروژن برون‌زاد و درون‌زاد بر سطح پلاسمایی رنین و اریتروپویتین در مسمومیت کلیوی ناشی از سیس‌پلاتین در موش صحرایی

      Background & Aims: Hydrogen sulfide due to cytoprotective effects can be used in prevention and treatment of many disorders. The effects of hydrogen sulfide onhormonal system in rat kidneys with cisplatin (CP) nephrotoxicity are unknown. The purpose of the experiments was to survey the effects of hydrogen sulfide on rat kidneys hormonal system with cisplatin nephrotoxicity. Ma...

متن کامل

Hydrogen sulfide ameliorates the kidney dysfunction and damage in cisplatin-induced nephrotoxicity in rat

Hydrogen Sulfide (H2S) prevents and treats a variety of disorders via its cytoprotective effects. However, the effects of H2S on rats with cisplatin (CP) nephrotoxicity are unclear. The aim was to study the effects of H2S on rats with CP nephrotoxicity. Thirty male Sprague-Dawley rats were divided into three groups: control group, nephrotoxic group received sing...

متن کامل

Modeling and Removal of Hydrogen Sulfide from Biogas Produced by Anaerobic Digestion

Anaerobic digestion can be used to convert organic waste into energy not only to provide renewable energy, but also reduce greenhouse gases. During the anaerobic digestion process, biogas is produced, which can be used for heating and electricity generation. The produced biogas contains methane and some other gases, the most destructive of which is hydrogen sulfide gas. If hydrogen sulfide gas ...

متن کامل

Hydrogen rich gas production via nano-catalytic gasification of bagasse in supercritical water

Ru/Al2O3 nano-catalysts were prepared with impregnation and microemulsion techniques. The supercritical water gasification reaction was performed at 400oC and 5-60 min. Within the tested operation conditions, the reaction residence time of 15 min was the optimum to maximize the H2 yield. It was observed that using microemulsion technique increases the total gas yield significantly. Using microe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 329 3  شماره 

صفحات  -

تاریخ انتشار 2009